∴數列{1an}的前項和為Sn=(1-12)+(12-13)+…+(1n-1n+1)=1-1n+1=nn+1.
又∵bn=n-8,
∴bnSn=n(n-8)n+1
=(n+1)2-10(n+1)+9n+1
=(n+1)+9n+1-10
≥2(n+1)?9n+1-10
=-4,
當且僅當n+1=9n+1,即n=2時等號成立,
故答案為:-4.